Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 801111, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734173

RESUMEN

The skin is the site of host invasion by the mosquito-borne Plasmodium parasite, which caused an estimated 229 million infections and 409,000 deaths in 2019 according to WHO World Malaria report 2020. In our previous studies, we have shown that skin scarification (SS) with a P. falciparum circumsporozoite (CS) peptide in the oil-in-water adjuvant AddaVax containing a combination of TLR 7/8 and TLR 9 agonists can elicit sporozoite neutralizing antibodies. SS with AddaVax + TLR agonists, but not AddaVax alone, elicited CD4+ Th1 cells and IgG2a/c anti-repeat antibody. To explore the innate immune responses that may contribute to development of adaptive immunity following SS, we examined the skin at 4h and 24h post priming with CS peptide in AddaVax with or without TLR agonists. H&E stained and IHC-labeled dorsal skin sections obtained 24h post SS demonstrated a marked difference in the pattern of infiltration with F4/80+, CD11b+ and Ly6G+ cells at the immunization site, with the lowest intensity noted following SS with AddaVax + TLR agonists. Serum collected at 4h post SS, had reproducible increases in IL-6, MIP-3α, IL-22 and IP-10 (CXCL10) following SS with AddaVax + TLR agonists, but not with AddaVax alone. To begin to decipher the complex roles of these pro-inflammatory cytokines/chemokines, we utilized IP-10 deficient (IP-10 -/-) mice to examine the role of this chemokine in the development of anti-repeat antibody response following SS. In the absence of IP-10, the levels of Th1-type IgG2a/c antibody and kinetics of the primary anti-repeat antibody response were reduced following prime and boost. The IP-10 chemokine, present as early as 4h post prime, may provide an early serological marker for rapid screening of adjuvant formulations and delivery platforms to optimize SS-induced humoral immunity to CS repeats as well as other pathogens.


Asunto(s)
Anticuerpos Antiprotozoarios , Inmunidad Innata , Malaria Falciparum , Plasmodium falciparum , Vacunación , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Neutralizantes , Quimiocina CXCL10 , Inmunoglobulina G , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Ratones , Proteínas Protozoarias
2.
NPJ Vaccines ; 6(1): 10, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462218

RESUMEN

Malaria remains a major cause of morbidity and mortality worldwide with 219 million infections and 435,000 deaths predominantly in Africa. The infective Plasmodium sporozoite is the target of a potent humoral immune response that can protect murine, simian and human hosts against challenge by malaria-infected mosquitoes. Early murine studies demonstrated that sporozoites or subunit vaccines based on the sporozoite major surface antigen, the circumsporozoite (CS) protein, elicit antibodies that primarily target the central repeat region of the CS protein. In the current murine studies, using monoclonal antibodies and polyclonal sera obtained following immunization with P. falciparum sporozoites or synthetic repeat peptides, we demonstrate differences in the ability of these antibodies to recognize the major and minor repeats contained in the central repeat region. The biological relevance of these differences in fine specificity was explored using a transgenic P. berghei rodent parasite expressing the P. falciparum CS repeat region. In these in vitro and in vivo studies, we demonstrate that the minor repeat region, comprised of three copies of alternating NANP and NVDP tetramer repeats, contains an epitope recognized by sporozoite-neutralizing antibodies. In contrast, murine monoclonal antibodies specific for the major CS repeats (NANP)n could be isolated from peptide-immunized mice that had limited or no sporozoite-neutralizing activity. These studies highlight the importance of assessing the fine specificity and functions of antirepeat antibodies elicited by P. falciparum CS-based vaccines and suggest that the design of immunogens to increase antibody responses to minor CS repeats may enhance vaccine efficacy.

3.
Sci Rep ; 6: 32575, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27624667

RESUMEN

Malaria eradication will require a combination of vector control, chemotherapy and an easily administered vaccine. Sterile immunity can be elicited in humans by immunization with sporozoites, the infective stage injected by bite of the mosquito vector, however, whole parasite vaccines present formidable logistical challenges for production, storage and administration. The "gold standard" for infectious disease eradiation, the Smallpox Eradication Programme, utilized mass immunization using the skin scarification (SS) route. SS may more closely mimic the natural route of malaria infection initiated by sporozoites injected by mosquito bite which elicits both neutralizing antibodies and protective cell mediated immunity. We investigated the potential of SS immunization using a malaria repeat peptide containing a protective B cell epitope of Plasmodium falciparum, the most lethal human species, and delivery vehicles containing TLR agonists as adjuvants. In a murine model, SS immunization with peptide in combination with TLR-7/8 and -9 agonists elicited high levels of systemic sporozoite neutralizing antibody, Th1- type CD4+ T cells and resistance to challenge by bites of infected mosquitoes. SS provides the potential to elicit humoral immunity to target Plasmodium at multiple stages of its complex life cycle.


Asunto(s)
Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Plasmodium falciparum/efectos de los fármacos , Esporozoítos/efectos de los fármacos , Adyuvantes Inmunológicos/administración & dosificación , Animales , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Humanos , Inmunización , Estadios del Ciclo de Vida/efectos de los fármacos , Estadios del Ciclo de Vida/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Ratones , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología , Esporozoítos/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...